Predict on rollout grids

%matplotlib inline
%reload_ext autoreload
%autoreload 2
import os
import sys

sys.path.append("../../../")

import getpass
import pickle
from pathlib import Path

import contextily as cx
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler

from povertymapping import nightlights, settings
from povertymapping.dhs import generate_dhs_cluster_level_data
from povertymapping.feature_engineering import (
    categorize_wealth_index,
    generate_features,
)
from povertymapping.iso3 import get_region_name
from povertymapping.rollout_grids import get_region_filtered_bingtile_grids
/home/jace/workspace/unicef-ai4d-poverty-mapping/env/lib/python3.9/site-packages/geopandas/_compat.py:111: UserWarning: The Shapely GEOS version (3.11.1-CAPI-1.17.1) is incompatible with the GEOS version PyGEOS was compiled with (3.10.1-CAPI-1.16.0). Conversions between both will be slow.
  warnings.warn(

Model Prediction on Rollout Grids: Laos

This notebook is the final step in the rollout and runs the final model to create relative wealth estimations over populated areas within the given country. The model predictions will have a spatial resolution of 2.4km.

The predicted relative wealth value gives us the relative wealth level of an area compared to the rest of the country, which fixes the value range from 0 (lowest wealth) to 1 (highest wealth). In between these extremes, each area’s wealth estimate is scaled to a value between 0 and 1.

The predicted relative wealth value is later binned into 5 wealth categories A-E by dividing the distribution into quintiles (every 20th percentile).

Set up Data Access

The following cell will prompt you to enter your EOG username and password. See this page to learn how to set-up your EOG account.

# Log-in using EOG credentials
username = os.environ.get("EOG_USER", None)
username = username if username is not None else input("Username?")
password = os.environ.get("EOG_PASSWORD", None)
password = password if password is not None else getpass.getpass("Password?")

# set save_token to True so that access token gets stored in ~/.eog_creds/eog_access_token
access_token = nightlights.get_eog_access_token(username, password, save_token=True)

Set country-specific parameters

COUNTRY_CODE = "la"
COUNTRY_OSM = get_region_name(COUNTRY_CODE, code="alpha-2").lower()
OOKLA_YEAR = 2019
NIGHTLIGHTS_YEAR = 2017

rollout_date = "-".join(os.getcwd().split("/")[-2].split("-")[:3])
rollout_grids_path = Path(f"./{rollout_date}-{COUNTRY_CODE}-rollout-grids.geojson")
rollout_grids_path
Path('2023-02-21-la-rollout-grids.geojson')

Set Model Parameters

# Model to use for prediction
MODEL_SAVE_PATH = Path(f"../{rollout_date}-cross-country-model.pkl")

Load Country Rollout AOI

The rollout area of interest is split into 2.4km grid tiles (zoom level 14), matching the areas used during model training. The grids are also filtered to only include populated areas based on Meta’s High Resolution Settlement Layer (HRSL) data.

Refer to the previous notebook 2_la_generate_grids.ipynb for documentation on generating this grid.

aoi = gpd.read_file(rollout_grids_path)
aoi.info()

Generate Features For Rollout AOI

If this is your first time running this notebook for this specific area, expect a long runtime for the following cell as it will download and cache the required datasets. It will then process the relevant features for each area specified. On subsequent runs, the runtime will be much faster as the data is already stored in your filesystem.

%%time
scaler = MinMaxScaler
rollout_aoi = aoi.copy()

# Create features dataframe using generate_features module
features = generate_features(
    rollout_aoi,
    country_osm=COUNTRY_OSM,
    ookla_year=OOKLA_YEAR,
    nightlights_year=NIGHTLIGHTS_YEAR,
    scaled_only=False,
    sklearn_scaler=scaler,
    features_only=True,
    use_aoi_quadkey=True,
)
2023-04-03 08:12:16.563 | INFO     | povertymapping.osm:download_osm_country_data:199 - OSM Data: Cached data available for laos at /home/jace/.geowrangler/osm/laos? True
2023-04-03 08:12:16.563 | DEBUG    | povertymapping.osm:load_pois:161 - OSM POIs for laos being loaded from /home/jace/.geowrangler/osm/laos/gis_osm_pois_free_1.shp
2023-04-03 08:12:21.088 | INFO     | povertymapping.osm:download_osm_country_data:199 - OSM Data: Cached data available for laos at /home/jace/.geowrangler/osm/laos? True
2023-04-03 08:12:21.090 | DEBUG    | povertymapping.osm:load_roads:180 - OSM Roads for laos being loaded from /home/jace/.geowrangler/osm/laos/gis_osm_roads_free_1.shp
2023-04-03 08:12:26.487 | DEBUG    | povertymapping.ookla:load_type_year_data:79 - Contents of data cache: []
2023-04-03 08:12:26.488 | INFO     | povertymapping.ookla:load_type_year_data:94 - Cached data available at /home/jace/.geowrangler/ookla/processed/63e5da2e8a7b57f0ef7942656eb89e11.csv? True
2023-04-03 08:12:26.489 | DEBUG    | povertymapping.ookla:load_type_year_data:99 - Processed Ookla data for aoi, fixed 2019 (key: 63e5da2e8a7b57f0ef7942656eb89e11) found in filesystem. Loading in cache.
2023-04-03 08:12:27.163 | DEBUG    | povertymapping.ookla:load_type_year_data:79 - Contents of data cache: ['63e5da2e8a7b57f0ef7942656eb89e11']
2023-04-03 08:12:27.165 | INFO     | povertymapping.ookla:load_type_year_data:94 - Cached data available at /home/jace/.geowrangler/ookla/processed/a1bc2e352417533b160e37996521193d.csv? True
2023-04-03 08:12:27.166 | DEBUG    | povertymapping.ookla:load_type_year_data:99 - Processed Ookla data for aoi, mobile 2019 (key: a1bc2e352417533b160e37996521193d) found in filesystem. Loading in cache.
2023-04-03 08:12:28.109 | INFO     | povertymapping.nightlights:get_clipped_raster:414 - Retrieving clipped raster file /home/jace/.geowrangler/nightlights/clip/736d0303579e70d5160f88bbb93f4986.tif
CPU times: user 52.6 s, sys: 25.4 s, total: 1min 17s
Wall time: 1min 18s
# Save raw features, can be used for validation
raw_features = features[[col for col in features.columns if "_scaled" not in col]]
# Then keep only scaled columns
features = features[[col for col in features.columns if "_scaled" in col]]

Inspect the generated features

features.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 22133 entries, 0 to 22132
Data columns (total 61 columns):
 #   Column                                    Non-Null Count  Dtype  
---  ------                                    --------------  -----  
 0   poi_count_scaled                          22133 non-null  float64
 1   atm_count_scaled                          22133 non-null  float64
 2   atm_nearest_scaled                        22133 non-null  float64
 3   bank_count_scaled                         22133 non-null  float64
 4   bank_nearest_scaled                       22133 non-null  float64
 5   bus_station_count_scaled                  22133 non-null  float64
 6   bus_station_nearest_scaled                22133 non-null  float64
 7   cafe_count_scaled                         22133 non-null  float64
 8   cafe_nearest_scaled                       22133 non-null  float64
 9   charging_station_count_scaled             22133 non-null  float64
 10  charging_station_nearest_scaled           22133 non-null  float64
 11  courthouse_count_scaled                   22133 non-null  float64
 12  courthouse_nearest_scaled                 22133 non-null  float64
 13  dentist_count_scaled                      22133 non-null  float64
 14  dentist_nearest_scaled                    22133 non-null  float64
 15  fast_food_count_scaled                    22133 non-null  float64
 16  fast_food_nearest_scaled                  22133 non-null  float64
 17  fire_station_count_scaled                 22133 non-null  float64
 18  fire_station_nearest_scaled               22133 non-null  float64
 19  food_court_count_scaled                   22133 non-null  float64
 20  food_court_nearest_scaled                 22133 non-null  float64
 21  fuel_count_scaled                         22133 non-null  float64
 22  fuel_nearest_scaled                       22133 non-null  float64
 23  hospital_count_scaled                     22133 non-null  float64
 24  hospital_nearest_scaled                   22133 non-null  float64
 25  library_count_scaled                      22133 non-null  float64
 26  library_nearest_scaled                    22133 non-null  float64
 27  marketplace_count_scaled                  22133 non-null  float64
 28  marketplace_nearest_scaled                22133 non-null  float64
 29  pharmacy_count_scaled                     22133 non-null  float64
 30  pharmacy_nearest_scaled                   22133 non-null  float64
 31  police_count_scaled                       22133 non-null  float64
 32  police_nearest_scaled                     22133 non-null  float64
 33  post_box_count_scaled                     22133 non-null  float64
 34  post_box_nearest_scaled                   22133 non-null  float64
 35  post_office_count_scaled                  22133 non-null  float64
 36  post_office_nearest_scaled                22133 non-null  float64
 37  restaurant_count_scaled                   22133 non-null  float64
 38  restaurant_nearest_scaled                 22133 non-null  float64
 39  social_facility_count_scaled              22133 non-null  float64
 40  social_facility_nearest_scaled            22133 non-null  float64
 41  supermarket_count_scaled                  22133 non-null  float64
 42  supermarket_nearest_scaled                22133 non-null  float64
 43  townhall_count_scaled                     22133 non-null  float64
 44  townhall_nearest_scaled                   22133 non-null  float64
 45  road_count_scaled                         22133 non-null  float64
 46  fixed_2019_mean_avg_d_kbps_mean_scaled    22133 non-null  float64
 47  fixed_2019_mean_avg_u_kbps_mean_scaled    22133 non-null  float64
 48  fixed_2019_mean_avg_lat_ms_mean_scaled    22133 non-null  float64
 49  fixed_2019_mean_num_tests_mean_scaled     22133 non-null  float64
 50  fixed_2019_mean_num_devices_mean_scaled   22133 non-null  float64
 51  mobile_2019_mean_avg_d_kbps_mean_scaled   22133 non-null  float64
 52  mobile_2019_mean_avg_u_kbps_mean_scaled   22133 non-null  float64
 53  mobile_2019_mean_avg_lat_ms_mean_scaled   22133 non-null  float64
 54  mobile_2019_mean_num_tests_mean_scaled    22133 non-null  float64
 55  mobile_2019_mean_num_devices_mean_scaled  22133 non-null  float64
 56  avg_rad_min_scaled                        22133 non-null  float64
 57  avg_rad_max_scaled                        22133 non-null  float64
 58  avg_rad_mean_scaled                       22133 non-null  float64
 59  avg_rad_std_scaled                        22133 non-null  float64
 60  avg_rad_median_scaled                     22133 non-null  float64
dtypes: float64(61)
memory usage: 11.0 MB

Run Model on AOI

Load Model

with open(MODEL_SAVE_PATH, "rb") as f:
    model = pickle.load(f)

Make Predictions

rollout_aoi["Predicted Relative Wealth Index"] = model.predict(features.values)

Binning predictions into wealth categories

Afterwards, we label the predicted relative wealth by binning them into 5 categories: A, B, C, D, and E where A is the highest and E is the lowest.

We can create these wealth categories by splitting the output Predicted Relative Wealth Index distribution into 5 equally sized quintiles, i.e. every 20th percentile.

This categorization may be modified to suit the context of the target country.

rollout_aoi["Predicted Wealth Category (quintile)"] = categorize_wealth_index(
    rollout_aoi["Predicted Relative Wealth Index"]
).astype(str)
rollout_aoi.info()
rollout_aoi.head(2)

Save output

%%time
rollout_aoi.to_file(
    f"{rollout_date}-{COUNTRY_CODE}-rollout-output.geojson",
    driver="GeoJSON",
    index=False,
)
CPU times: user 3.47 s, sys: 93.8 ms, total: 3.56 s
Wall time: 3.63 s
# Join back raw features and save
rollout_output_with_features = rollout_aoi.join(raw_features).join(features)
rollout_output_with_features.to_file(
    f"{rollout_date}-{COUNTRY_CODE}-rollout-output-with-features.geojson",
    driver="GeoJSON",
    index=False,
)

Visualizations

Inspect predicted wealth index and output dataframe

rollout_aoi[["Predicted Relative Wealth Index"]].hist()
array([[<Axes: title={'center': 'Predicted Relative Wealth Index'}>]],
      dtype=object)

Create Static Maps

Plot Predicted Relative Wealth Index

plt.cla()
plt.clf()
rollout_aoi_plot = rollout_aoi.to_crs("EPSG:3857")
ax = rollout_aoi_plot.plot(
    "Predicted Relative Wealth Index",
    figsize=(20, 8),
    cmap="viridis",
    legend=True,
    legend_kwds={"shrink": 0.8},
)
cx.add_basemap(ax, source=cx.providers.OpenStreetMap.Mapnik)
ax.set_axis_off()
plt.title("Predicted Relative Wealth Index")
plt.tight_layout()
plt.savefig(f"{rollout_date}-{COUNTRY_CODE}-predicted-wealth-index.png")
plt.show()
<Figure size 640x480 with 0 Axes>

Plot Predicted Relative Wealth Index Category

plt.cla()
plt.clf()
rollout_aoi_plot = rollout_aoi.to_crs("EPSG:3857")
ax = rollout_aoi_plot.plot(
    "Predicted Wealth Category (quintile)",
    figsize=(20, 8),
    cmap="viridis_r",
    legend=True,
)
cx.add_basemap(ax, source=cx.providers.OpenStreetMap.Mapnik)
ax.set_axis_off()
plt.title("Predicted Wealth Category")
plt.tight_layout()
plt.savefig(f"{rollout_date}-{COUNTRY_CODE}-predicted-wealth-bin.png")
plt.show()
<Figure size 640x480 with 0 Axes>

Create an Interactive Map

cols_of_interest = [
    "quadkey",
    "shapeName",
    "shapeGroup",
    "pop_count",
    "avg_rad_mean",
    "mobile_2019_mean_avg_d_kbps_mean",
    "fixed_2019_mean_avg_d_kbps_mean",
    "poi_count",
    "road_count",
    "Predicted Relative Wealth Index",
    "Predicted Wealth Category (quintile)",
]

# Warning: This can be a bit laggy due to the large amount of tiles being visualized

# Uncomment the ff if you want to viz the raw wealth predictions
# rollout_aoi.explore(column='Predicted Relative Wealth Index', tooltip=cols_of_interest, cmap="viridis")

# Uncomment the ff if you want to view the quintiles
# rollout_aoi.explore(column='Predicted Wealth Category (quintile)', tooltip=cols_of_interest, cmap="viridis_r")

Alternatively, you may also try to visualize this interactively in Kepler by uploading the rollout output geojson file.